Step of Proof: fincr_formation
12,41
postcript
pdf
Inference at
*
1
2
1
I
of proof for Lemma
fincr
formation
:
.....assertion..... NILNIL
1.
i
:
2.
f
: {
f
|
i
:{
i1
:
|
i1
(
i
,
j
.
i
<
j
)
i
}
if (
i
=
0) then
else {
f
(
i
- 1)...} fi }
j
:{
k
:
|
k
<
i
} .
f
(
j
)
latex
by ((((((((AbReduce (-1))
CollapseTHEN (D 0))
)
CollapseTHENM (D (-1)))
)
CollapseTHENM (
C
CompNatInd (-2)))
)
THENW ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
T
)) (first_tok :t) inil_term)))
latex
T
1
:
T1:
2.
f
: {
f
|
i
:{
i1
:
|
i1
<
i
}
if (
i
=
0) then
else {
f
(
i
- 1)...} fi }
T1:
3.
j
:
T1:
4.
j1
:
. (
j1
<
j
)
(
j1
<
i
)
(
f
(
j1
)
)
T1:
(
j
<
i
)
(
f
(
j
)
)
T
.
Definitions
,
False
,
A
,
A
B
,
i
j
,
P
Q
,
,
t
T
,
x
:
A
.
B
(
x
)
,
x
f
y
Lemmas
le
wf
,
ge
wf
,
nat
properties
,
nat
wf
origin